Au début du XIX e siècle, le cheval était la référence de puissance des attelages.

Le premier tramway a été inventé en 1832 par un new yorkais et il s'agissait d'un tramway à cheval!

Problématique:

Comment un cheval attelé à un tramway doit-il se déplacer pour faire avancer le tramway avec un maximum d'efficacité ?

Correction:

Bilan des forces s'exerçant sur le tramway :

Force s'exerçant sur le tramway	Force de traction du cheval $ec{F}$	Poids : \vec{P}	Réaction normale : $\overrightarrow{R_N}$
Travail	$W = F \times AB \times \cos(\theta)$	$W = mg \times AB$ $\times \cos(90)$ $W = 0$	$W = -mg \times AB$ $\times \cos(90)$ $W = 0$

Travail de la force de traction :

 θ correspond à l'angle entre le déplacement \overrightarrow{AB} et la direction dans laquelle tire le cheval.

Situation	1	2	3
	θ = 0°	θ = 30°	θ = 90°
Expression du travail de la force de traction	$W = F \times AB$ $\times \cos(0)$ $W = F \times AB$	$W = F \times AB$ $\times \cos(30)$ $W = \frac{\sqrt{3}}{2} = F \times AB$	$W = F \times AB$ $\times \cos(90)$ $W = 0$
Signe du travail	Positif	Positif	Nul

- 3 La force de frottement s'exerce dans le sens opposé au mouvement. L'angle entre le déplacement \overrightarrow{AB} et la force de frottement sera donc de 180°. Or $\cos(180) = -1$, le travail exercé par la force de frottement sera donc négatif. Le travail exercé sera résistant.
- La solution la plus efficace est celle qui aura le travail le plus grand : c'est donc la situation 1 qui permet une optimisation du déplacement du tramway.
- 5 Lorsque le travail est positif, il est moteur. Lorsqu'il est négatif, il est résistant.